Anzeige
Mehr »
Login
Sonntag, 17.11.2024 Börsentäglich über 12.000 News von 676 internationalen Medien
Kolumbiens nächster Kupferriese? Warum Investoren dieses 14.000-Meter-Bohrprogramm beobachten!
Anzeige

Indizes

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Aktien

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Xetra-Orderbuch

Fonds

Kurs

%

Devisen

Kurs

%

Rohstoffe

Kurs

%

Themen

Kurs

%

Erweiterte Suche
PR Newswire
428 Leser
Artikel bewerten:
(2)

Okayama University research: Studying Parkinson's disease with face-recognition software

Finanznachrichten News

OKAYAMA, Japan, March 28, 2021 /PRNewswire/ -- Researchers at Okayama University report in Brain Supplement that artificial-intelligence technology can detect facial characteristics of Parkinson's disease. The faces of patients were systematically found to look older and expressionless.

Parkinson's disease is a brain disorder leading to motor symptoms including shaking, stiffness and difficulty with walking, as well as mental symptoms such as depression, memory problems and fatigue. Usually, the syndrome also includes facial abnormalities known as 'facial masking' - an affected person's face has a mask-like expression. Given the recent progress in face-recognition tools based on artificial intelligence (AI), Professor ABE Koji and colleagues from Okayama University explored whether AI technology can be used to detect facial changes in patients with Parkinson's disease.

The researchers worked with 96 healthy (control) subjects and 97 patients with Parkinson's disease. The face of each participant was photographed and then analyzed with AI software. For each facial photograph, the program produced a set of attributes such as age, gender and emotion.

By looking at the 'age gap', defined as the appearance age (as determined by the AI software) minus the real age, the scientists found that the appearance of patients with Parkinson's disease made them look older by an average of 2.4 years. For male patients, the average age gap was even 3.4 years. Another observation was that elder patients tended to have a smaller age gap than younger patients.

Regarding emotions, Abe and colleagues found that for the patients with Parkinson's disease, expressionless faces were significantly more frequent than for the healthy control subjects (89% vs. 77%, respectively), and that happy faces were significantly less frequent (5% vs. 19%, respectively). Other emotions, such as contempt, surprise, disgust, anger and fear were not found to differ between the two groups.

The condition of the participants' facial skin was also analyzed based on photographs, with the aim of taking skin features such as stains, wrinkles and eye shadow into account. No significant differences between the skin of healthy subjects and Parkinson's disease patients were found, though. The scientists believe that the employed smartphone application did not focus on the oiliness of facial skin.

The overall conclusion of Professor ABE and colleagues is that "Parkinson's disease patients looked older and expressionless using publically available AI face recognition software." They point out, however, that the accuracy of facial recognition software depends on gender and skin color, which leads to ethical concerns. Quoting the scientists: "Although face recognition is a remarkable technology, its ethical risk should also be resolved for clinical application."

Background

Parkinson's disease : In patients suffering from Parkinson's disease, the progressive loss of the function or structure of neurons (brain cells) leads to a disorder of the central nervous system, affecting its motor system. Tremor, slowness of movement and difficulties with walking are among the main symptoms in the early stages of Parkinson's, with dementia being common at more advanced stages.

Another symptom often associated with Parkinson's disease is the loss of facial expressions, known as hypomimia. It refers to a patient often having a fixed, mask-like expression. Hypomimia is a consequence of the progressive loss of motor control extending to the facial muscles. The condition often estranges acquaintances, and can make it difficult for care partners to interact with the patient, as they cannot always properly assess the latter's mood.

Now, Professor ABE Koji and colleagues from Okayama University have shown that artificial-intelligence applications can characterize the faces of Parkinson's disease patients as looking older and expressionless.

Reference

Koh Tadokoro, Toru Yamashita, Yusuke Fukui, Zhihong Bian, Xinran Hu, Mami Takemoto, Ryo Sasaki, Namiko Matsumoto, Emi Nomura, Ryuta Morihara, Yoshio Omote, Nozomi Hishikawa, Koji Abe. Detecting facial characteristics of Parkinson's disease by novel artificial intelligence (AI) softwares. Brain Supplement, 2021;3:1-7. https://6b95d072-44e5-4cb6-b67e-26198abec2ca.filesusr.com/ugd/bb2283_ced7c428e6c04cbaba892b1b03401f86.pdf

Reference (Okayama Univ. e-Bulletin): Professor ABE's team

OU-MRU Vol.74:Rising from the ashes-dead brain cells can be regenerated after traumatic injury
OU-MRU Vol.79:Novel blood-based markers to detect Alzheimer's disease
OU-MRU Vol.87:Therapeutic potential of stem cells for treating neurodegenerative disease

Correspondence to:
Professor ABE Koji, M.D., Ph.D.
Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
E-mail: abekabek@cc.okayama-u.ac.jp
http://www.okayama-u.ac.jp/user/med/shinkeinaika/english.html

Further information:
Okayama University
1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan
Public Relations Division
E-mail: www-adm@adm.okayama-u.ac.jp
Website: http://www.okayama-u.ac.jp/index_e.html

Okayama Univ. e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/
We love OKAYAMA UNIVERSITY:
https://www.youtube.com/watch?v=7cXlttQIk3E
Okayama University Image Movie (2020):
https://www.youtube.com/watch?v=vQxeL0ztSLA
Okayama University supports the Sustainable Development Goals: https://sdgs.okayama-u.ac.jp/en/

Okayama University Medical Research Updates(OU-MRU)
The whole volume: OU-MRU (1- )
Vol.1:Innovative non-invasive 'liquid biopsy' method to capture circulating tumor cells from blood samples for genetic testing
Vol.88:Nanotechnology for making cancer drugs more accessible to the brain

About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 13,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences.

Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

Website: http://www.okayama-u.ac.jp/index_e.html

© 2021 PR Newswire
Nach Nvidia: 5 KI-Revolutionäre aus der zweiten Reihe!
Künstliche Intelligenz hat spätestens nach dem Raketenstart von Chat GPT das Leben aller verändert. Doch der Superzyklus steht nach Meinungen von Experten erst am Anfang. Während Aktien wie Nvidia von der ersten Aufwärtsentwicklung stark profitieren konnten, versprechen aussichtsreiche Player aus der

zweiten Reihe noch enormes Aufwärtspotenzial.

Im kostenlosen, exklusiven Spezialreport präsentieren wir ihnen 5 innovative KI-Unternehmen, die bahnbrechende Entwicklungen in diesem Sektor prägen könnten.

Warum sollten Sie dabei sein?
Trotz der jüngsten Erfolge steht die Entwicklung der künstlichen Intelligenz noch am Beginn eines neuen Superzyklus. Experten gehen davon aus, dass der Sektor bis 2032 global auf 1,3 Billionen US-Dollar explodieren wird, wobei ein großer Teil auf Hardware und Infrastruktur entfallen wird.

Nutzen Sie die Chance!
Fordern Sie sofort unseren brandneuen Spezialreport an und erfahren Sie, welche 5 KI-Aktien das größte Potenzial zur Vervielfachung besitzen. Dieser Report ist komplett kostenlos und zeigt Ihnen die aussichtsreichsten Investments im KI-Sektor.
Handeln Sie jetzt und sichern Sie sich Ihren kostenfreien Report!

Werbehinweise: Die Billigung des Basisprospekts durch die BaFin ist nicht als ihre Befürwortung der angebotenen Wertpapiere zu verstehen. Wir empfehlen Interessenten und potenziellen Anlegern den Basisprospekt und die Endgültigen Bedingungen zu lesen, bevor sie eine Anlageentscheidung treffen, um sich möglichst umfassend zu informieren, insbesondere über die potenziellen Risiken und Chancen des Wertpapiers. Sie sind im Begriff, ein Produkt zu erwerben, das nicht einfach ist und schwer zu verstehen sein kann.