Anzeige
Mehr »
Login
Samstag, 23.11.2024 Börsentäglich über 12.000 News von 677 internationalen Medien
Microsofts, Googles und Amazons nukleares Wettrennen macht diese Uranaktie zu einem Muss!
Anzeige

Indizes

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Aktien

Kurs

%
News
24 h / 7 T
Aufrufe
7 Tage

Xetra-Orderbuch

Fonds

Kurs

%

Devisen

Kurs

%

Rohstoffe

Kurs

%

Themen

Kurs

%

Erweiterte Suche

WKN: 3754 | ISIN: KR7011070000 | Ticker-Symbol:
Branche
Elektrotechnologie
Aktienmarkt
ASIEN
1-Jahres-Chart
LG INNOTEK CO LTD Chart 1 Jahr
5-Tage-Chart
LG INNOTEK CO LTD 5-Tage-Chart
PR Newswire
257 Leser
Artikel bewerten:
(1)

LG Innotek Becomes Industry's First to Use AI to Prevent Input of Defective Raw Materials in Production

Finanznachrichten News
  • Achieved early detection of cause of defects in raw materials through AI, becoming "first to overcome this challenge in the industry"
  • Applied to high-value semiconductor substrates, analyzing raw material defects in only one minute
  • Reduces defect analysis time by up to 90%

SEOUL, South Korea, Oct. 7, 2024 /PRNewswire/ -- Today, LG Innotek (CEO Moon Hyuksoo) announced the development and application of the industry's first "Artificial Intelligence (AI)-based inspection system for incoming raw materials", designed to detect defects at the point of receipt and prevent the use of substandard raw materials in the process.


LG Innotek applied its AI-based inspection technology, developed by combining material information and AI image processing technologies, to the RF-SiP (Radio Frequency System-in-Package) process. Recently, the technology was also introduced for the FC-BGA (Flip Chip Ball Grid Array), and is expected to further enhance the competitiveness and quality of LG Innotek's high-value semiconductor substrate products.

Previously, incoming raw materials underwent only a visual inspection before entering the production process. However, the continued advancement of semiconductor substrate technology changed this. Even after improving all in-process defect causes, failures in reliability evaluations continued to rise. This led the quality of incoming materials to gain attention as a decisive factor affecting reliability evaluations.

The core raw materials (i.e. Prepreg (PPG), Ajinomoto Build-up Film (ABF), and Copper-Clad Laminate (CCL)) that comprise semiconductor substrates arrive as a mixture of glass fibers, inorganic compounds, and other components. In the past, air voids (gaps between particles) or foreign particles generated during the material mixing process did not significantly impact product performance. However, as substrate specifications, such as circuit spacing, have become increasingly stringent, the presence of air voids and foreign particles, depending on their size, has started to cause defects.

As a result, it is virtually impossible to identify which part of the raw material is responsible for the defect using traditional visual inspection methods, which has become a significant challenge for the industry.

If we were to compare one lot of raw materials mixture (unit of raw materials with the same characteristics that goes into the production process) to a batch of cookie dough, it is impossible for the eye to perceive the concentration of salt or sugar in a certain portion, the number of air holes in the dough, or the number of foreign particles.

LG Innotek has found a way to overcome this industry challenge with AI. Its "AI-based Inspection System for Incoming Raw Materials" has been trained with tens of thousands of pieces of data on the composition of materials that are either suitable or unsuitable for a product. Based on this, it analyzes the components and defective areas of semiconductor substrate raw materials in only one minute, with an accuracy rate of over 90%, and visualizes quality deviations in each lot of raw materials.

By using AI machine learning to visualize, quantify, and standardize material configurations optimized for quality, LG Innotek has been able to prevent defective raw materials from entering the production process. The company can change the material design based on the quality deviation information visualized by the AI system, allowing it to ensure that the quality of the raw materials lot is uniform at a suitable level before entering the process.

An LG Innotek official commented, "With the "AI-based Inspection System for Incoming Raw Materials", the time required to analyze defects has been decreased by up to 90%, and the cost of resolving the causes of defects has been significantly reduced."

LG Innotek plans to enhance the AI system's detection capabilities by sharing raw materials-related data with customers and suppliers in the substrate sector through digital partnerships.

Additionally, the company aims to expand the system's application to optical solutions, such as camera modules, where the image-based detection of material defects can play a crucial role.

LG Innotek CTO S.David Roh said, "With the "AI-based inspection system", we will complete LG Innotek's unique AI ecosystem, which delivers exceptional customer value by identifying causes of product defects early in the production process." He added, "We will continue innovating in digital production technology to create top-quality products at the lowest cost and in the shortest time."

Logo - https://mma.prnewswire.com/media/2312913/logo__LG_Innotek_Logo.jpg

Cision View original content:https://www.prnewswire.co.uk/news-releases/lg-innotek-becomes-industrys-first-to-use-ai-to-prevent-input-of-defective-raw-materials-in-production-302268554.html

© 2024 PR Newswire
Treibt Nvidias KI-Boom den Uranpreis?
In einer Welt, in der künstliche Intelligenz zunehmend zum Treiber technologischer Fortschritte wird, rückt auch der Energiebedarf, der für den Betrieb und die Weiterentwicklung von KI-Systemen erforderlich ist, in den Fokus.

Nvidia, ein Vorreiter auf dem Gebiet der KI, steht im Zentrum dieser Entwicklung. Mit steigender Nachfrage nach leistungsfähigeren KI-Anwendungen steigt auch der Bedarf an Energie. Uran, als Schlüsselkomponente für die Energiegewinnung in Kernkraftwerken, könnte dadurch einen neuen Stellenwert erhalten.

Dieser kostenlose Report beleuchtet, wie der KI-Boom potenziell den Uranmarkt beeinflusst und stellt drei aussichtsreiche Unternehmen vor, die von diesen Entwicklungen profitieren könnten und echtes Rallyepotenzial besitzen

Handeln Sie Jetzt!

Fordern Sie jetzt den brandneuen Spezialreport an und profitieren Sie von der steigenden Nachfrage, der den Uranpreis auf neue Höchststände treiben könnte.
Werbehinweise: Die Billigung des Basisprospekts durch die BaFin ist nicht als ihre Befürwortung der angebotenen Wertpapiere zu verstehen. Wir empfehlen Interessenten und potenziellen Anlegern den Basisprospekt und die Endgültigen Bedingungen zu lesen, bevor sie eine Anlageentscheidung treffen, um sich möglichst umfassend zu informieren, insbesondere über die potenziellen Risiken und Chancen des Wertpapiers. Sie sind im Begriff, ein Produkt zu erwerben, das nicht einfach ist und schwer zu verstehen sein kann.